
Fast Fourier Transform

E.H.F.

June, 2004

1 Fourier Analysis of Periodic Functions

1.1 Continuous Periodic Functions

Consider a complex continuous function f : R → C such that it is periodic:
f(x+L) = f(x). In standard Fourier analysis, this function can be expressed
as a linear combination of complex exponentials

f(x) =
1√
2π

∑
k∈Z

fke
iαkx (1)

where Z denotes the set of all integers, αk = 2πk/L and the Fourier coeffi-
cients are

fk =
1√
2π

∫ L

0
e−iαkxf(x). (2)

There are a countable number of Fourier coefficients due to the periodicity of
f(x). When we perform a numerical calculation, this function must first be
discretized. Then it is important to understand Fourier analysis of discrete
periodic functions.

1.2 Periodic Functions on the Integers

Let fj ∈ C be a complex function for all integers j, and let this function be
periodic: fj = fn+j. We want to express this function as a linear combination
of complex exponentials eiαj. Since fj is periodic, the complex exponentials
must also be periodic, so then eiαj = eiα(n+j) which implies that αn = 2πk
for some integer k. We define

αk ≡
2πk

n
(3)

1



so then eiαkj indexed by k as a function of the integer j are the basis functions.
Since eiαkj = eiαn+kj for all j, there are only n linearly independent basis
functions. We choose eiαkj for k = 0, 1, . . . , n− 1. Then for any fj we have

fj =
1√
n

n−1∑
k=0

f̂ke
iαkj (4)

where f̂k are the n Fourier coefficients. To determine these coefficients, we
multiply both sides of the equation by e−iαlj/

√
n and sum over j:

1√
n

n−1∑
j=0

fje
−iαlj =

1

n

n−1∑
j,k=0

f̂ke
iαkje−iαlj (5)

For the summation over j on the right side of this equation, we must evaluate

1

n

n−1∑
j=0

exp
(
i
2π

n
(k − l)j

)
=

1

n

n−1∑
j=0

eiαk−lj (6)

since αk ≡ 2πk/n. If we define

Jk ≡
1

n

n−1∑
j=0

eiαkj (7)

then the previous sum in Eqn. 6 is equivalent to Jk−l. First, consider J0.
Then each exponential has a value of 1, so then J0 = 1. Now consider Jk for
integers k 6= 1. We note that

Jke
iαk =

n−1∑
j=0

eiαkjeiαk =
n∑

l=1

eiαkl =
n−1∑
l=0

eiαkl = Jk (8)

To obtain the expression to the right of the second equality, we simply change
variables so that l = j+1. For the expression to the right of the third equality,
we use periodicity to note eiαkn = eiαk0 = 1. Since eiαk 6= 0 for all integers
k 6= 0 and n > 0, then Jk = 0 for all k 6= 0. Then

1

n

n−1∑
j=0

exp
(
i
2π

n
(k − l)j

)
= Jk−l = δkl (9)

where δkl is the Kronecker delta function. A function fj is a n component
vector with complex entries, and the set of all functions fj is a vector space

2



Cn. If we define the inner product as the dot product of two vectors, then the
basis functions e−iαkj/

√
n are orthonormal because of Eqn. 9. This implies

that the Fourier coefficients are given by

f̂k =
1√
n

n−1∑
j=0

fje
−iαkj (10)

where f̂k is a complex number. One can think of f̂k as a discrete Fourier
transform of fj. The information in the n complex numbers of fj for j =

0, . . . , n − 1 can be represented as n different complex numbers in f̂k for
k = 0, . . . , n− 1.

1.3 Matrix Properties

The relationship between f̂k and fj is linear, so it is possible to obtain f̂k

from a matrix multiplication

f̂k =
n−1∑
j=0

Fkjfj (11)

where it is straightforward to verify that

Fkj =
1√
n

wkj
n ; wn ≡ e−i2π/n. (12)

Consider the conjugate transpose matrix of Fkj

F †
kj =

1√
n

(
w†

n

)kj
; w†

n ≡ ei2π/n. (13)

Taking the matrix product of Fkj and its conjugate transpose, we obtain

n−1∑
l=0

FklF
†
lj =

1

n

n−1∑
l=0

ei(αk−αj)l = Jk−j = δkj (14)

so then the conjugate transpose is also the inverse of Fkj. This implies that
Fkj is a unitary matrix and represents a length preserving rotation in the
vector space Cn.

3



2 Fast Fourier Transform

When we compute the Fourier transform of a continuous periodic function
in a computer, we first discretize the function at n points and then perform
a discrete Fourier transform. Computing f̂k for each integer k requires n
complex multiplications, and there are n components of f̂k, so the matrix
multiplication takes n2 complex multiplication operations. Fortunately, we
can perform this matrix multiplication with fewer operations using an idea
called recursion.

2.1 Recursion

The idea behind recursion is to break up a large computation into smaller
computations of the same type. A recursive algorithm continues to break up
the computations until it finds a computation that is trivial. These trivial
computations are combined to give the result of the large computation.

The way this actually works in code is that a recursive functions calls
itself. Pseudo code for a recursive algorithm fftrecursive looks like the fol-
lowing:

• if this is a trivial calculation, return the result of the trivial calculation

• if this not the trivial calculation,

– break the calculation up into smaller calculations

– perform these smaller calculations by calling fftrecursive

– put the results of these smaller calculations together and return
the result

A recursive algorithm has a tree type structure, since it branches off and
branches off until it finds trivial calculations. Then it goes back up the tree
putting together the results of smaller calculations until it finally returns the
result of the original large calculation.

2.2 Breaking up the Fourier transform

To break up the large matrix multiplication into smaller matrix multiplica-
tions, we identify a certain property of wn ≡ ei2π/n: if m = n/2 then

wm = w2
n. (15)

4



When we insert m = n/2 into ei2π/m, we insert m into the denominator in the
exponential and hence obtain the square of the ei2π/n. The idea is to break up
one matrix multiplication by an n×n matrix into two matrix multiplications
by (n/2)× (n/2) matrices.

To show how to do this, we write down the original problem again as

f̂n
k =

n−1∑
j=0

F n
kjf

n
j (16)

where we add a superscript n to the names of the vectors and matrices
so we can distinguish them from vectors and matrices of dimension m =
n/2. Imagine making all the odd components of fj zero and performing
the summation over j in Eqn. 16. For a nonzero contribution to this sum,
the term from F n

kj differs from the term in F n
kj from the previous nonzero

contribution by a factor of w2
n. The elements of F n

kj that are important in

the summation are also elements of Fm
kj or F

n/2
kj . If we define

fm,e
j ≡ fn

2j , fm,o
j ≡ fn

2j+1 (17)

for j = 0, . . . ,m− 1 as the even and odd components of the vector fn
j , then

we could transform fm,e
j and fm,o

j by Fm
kj and put the result back together to

obtain the result in Eqn. 16.
The formula for putting the results of the smaller m × m calculation

together comes from the following computation:

f̂n
k =

n−1∑
j=0

F n
kjf

n
j =

n−1∑
j=0

fn
j wkj

n n−1/2

=

(
m−1∑
l=0

fn
2lw

k2l
n +

m−1∑
l=0

fn
2l−1w

k(2l+1)
n

)
n−1/2

=

(
m−1∑
l=0

fm,e
l wkl

m + wk
n

m−1∑
l=0

fm,o
l wkl

m

)
n−1/2

Using the relationship wkl
m =

√
mFm

kl , we can rewrite the first half of the
terms k = 0, 1, . . . ,m− 1

f̂n
k =

√
m

n

m−1∑
l=0

Fm
kl f

m,e
l + wk

n

√
m

n

m−1∑
l=0

Fm
kl f

m,o
l = 2−1/2

(
f̂m,e

k + wk
nf̂

m,o
k

)
. (18)

5



For the remaining terms which we represent as m+k for k = 0, 1, . . . ,m− 1,
we have

f̂n
m+k =

m−1∑
l=0

(
fm,e

l wl(m+k)
m + wm+k

n fm,o
l wl(m+k)

m

)
(19)

for k = 0, 1, . . . ,m − 1. Since wml
m = 1 for all l and wm+k

n = wk
nw

n/2
n =

wk
ne

−iπ = −wk
n, we obtain

f̂n
m+k = 2−1/2

(
f̂m,e

k − wk
nf̂

m,o
k

)
(20)

for k = 0, 1, . . . m− 1. So the result is

f̂n
k = 2−1/2

(
f̂m,e

k + wk
nf̂

m,o
k

)
(21)

f̂n
m+k = 2−1/2

(
f̂m,e

k − wk
nf̂

m,o
k

)
(22)

for k = 0, 1, . . . m−1. The full result for an n dimensional matrix product can
be constructed from two m = n/2 dimensional matrix products. Note that
this reconstruction procedure requires an addition m complex multiplications
to compute wk

nf̂
m,o
k .

2.3 Algorithm

The beauty of breaking down the matrix multiplications is that this proce-
dure can be repeated. For simplicity, suppose the original dimension of the
matrix is a power of 2, so n = 2l. This process of splitting the computation
in half happens l times; at this point, there are n discrete Fourier transforms
of one complex number, which is simply the same complex number.

f̂ 1
0 = f 1

0 (23)

This is the trivial calculation in the recursive algorithm. The full solution
is constructed from these numbers by applying Eqn. 21 and 22 for l − 1
remaining levels of the problem. Each of these levels requires n/2 operations,
so then the number of operations is (n/2)l ≈ n log2 n. As n gets large, this is a
significant improvement from the n2 operations required of a straightforward
matrix multiplication.

6


